All functions

Estimates Estimates-class

Estimates

MatrixDesign MatrixDesign-class

MatrixDesign

ParameterConfig ParameterConfig-class

ParameterConfig

ScMaSigPro ScMaSigPro-class

ScMaSigPro

Significant Significant-class

Significant

VariableProfiles VariableProfiles-class

VariableProfiles

as_scmp()

Convert 'Cell Dataset' or 'SingleCellExperiment' object to ScMaSigPro object.

cDense(<ScMaSigPro>)

Set or get the Dense Column Data of an ScMaSigPro Object

`cDense<-`(<ScMaSigPro>)

Replacement method for cDense

`cDense<-`()

Set the data for Dense Slot

cDense()

Get the data for Dense Slot.

cSparse(<ScMaSigPro>)

Set or get the Sparse Column Data of an ScMaSigPro Object

`cSparse<-`(<ScMaSigPro>)

Replacement method for cSparse

`cSparse<-`()

Set the data for Sparse Slot

cSparse()

Get the data for Sparse Slot.

create_scmp()

Create ScMaSigPro Object

eDense(<ScMaSigPro>)

Retrieve Expression Data from Dense Slot

`eDense<-`(<ScMaSigPro>,<character>,<matrix>)

Set or Update Expression Data in Dense Slot

`eDense<-`()

Set Expression Counts in Dense Slot

eDense()

Retrieve Expression Counts from Dense Slot

eSparse(<ScMaSigPro>)

Retrieve Expression Counts from Sparse Slot

`eSparse<-`(<ScMaSigPro>,<character>,<matrix>)

Set Expression Counts in Sparse Slot

`eSparse<-`()

Set Expression Counts in Sparse Slot

eSparse()

Get Expression Counts from Sparse Slot

m3_select_path()

Select branching paths from a 'Cell Dataset' object from Monocle3

multi.lin.sce

Simulated Multifurcating Trajectory SingleCellExperiment Object

pathAssign(<ScMaSigPro>)

Set or get the Assignment Matrix.

`pathAssign<-`(<ScMaSigPro>)

Replacement method for pathAssign

`pathAssign<-`()

Replacement method for pathAssign.

pathAssign()

Get or set the Branch Assignment Matrix

pb_counts()

Create Pseduo-bulk Counts

plotBinTile()

Plot Bin Sizes Across Binned Time and Paths

plotDiagnostics()

Plot Model Diagnostics

plotIntersect()

Generate UpSet Plot

plotTrend()

Plot trend of the single gene.

plotTrendCluster()

Plot multiple trends of the multiple genes.

predictors(<ScMaSigPro>)

Set or get the Predictor Matrix.

`predictors<-`(<ScMaSigPro>)

Replacement method for predictors

`predictors<-`()

Replacement method for predictors.

predictors()

Get or set the Predictor Matrix

queryCoeff()

Get Features from scMaSigPro Object

sc.cluster.trend()

Cluster the counts or coefficients.

sc.filter()

Extract significant genes based on R-Square and P-values

sc.p.vector()

Perform fitting with full model.

sc.restruct()

Restructure the binned data.

sc.set.poly()

Set up polynomial models and create Predictor Matrix

sc.squeeze()

Pseudo-bulking with optimal number of Pseudotime based bins

sc.t.fit()

Perform stepwise regression fit to select for significant terms.

scmp.ob

scMaSigPro Object with results

showCoeff()

Show or Return the Coefficient matrix

showGroupCoeff()

Show or Return the Branching Path Coefficient matrix

showInflu()

Return the matrix of genes with influential observation

showParams()

Show the parameters used during the workflow.

showPoly()

Print the full model formula.

showSigProf()

Show or Return the counts for non-flat profile.

showSol()

Show or Return the P-values after model fitting.

showTS()

Show or Return the t-score matrix

splat.sim

Simulated SingleCellExperiment Object