Set up polynomial models and create Predictor Matrix that will contain the independent variables. It is a wrapper around `maSigPro::make.design.matrix`.

sc.set.poly(
  scmpObj,
  poly_degree = 2,
  bin_ptime_col = scmpObj@Parameters@bin_ptime_col,
  path_col = scmpObj@Parameters@path_col
)

Arguments

scmpObj

An object of class ScMaSigPro.

poly_degree

Degree of the polynomial.

bin_ptime_col

A character string representing the column name for binned Pseudotime values in 'Dense' data.

path_col

A character string representing the column name for branching path assignment in 'Sparse' or 'Dense' slot.

Value

An object of class ScMaSigPro, with updated `Design` slot.

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102

See also

Author

Priyansh Srivastava spriyansh29@gmail.com, Ana Conesa and Maria Jose Nueda, mj.nueda@ua.es