This function clusters the counts or coefficients to visualize the collective trends later.
sc.cluster.trend(
scmpObj,
geneSet = "intersect",
cluster_by = "coeff",
cluster_method = "hclust",
hclust.agglo.method = "ward.D",
kmeans.iter.max = 500,
hclust.distance = "cor",
includeInflu = TRUE,
mclust.k = FALSE,
k = 9,
verbose = FALSE,
fill_na = "zero",
use_dim = "col"
)
An object of class ScMaSigPro
.
Specify the gene set to be used for clustering. (Default is "intersect")
Whether to use counts or coefficients for clustering.
Clustering method for data partioning. Currently "hclust", "kmeans" and "Mclust" are supported.
Aggregation Method. (Default is "ward.D")
Maximum number of iterations when cluster.method is kmeans
Distance measurement.(Default is "cor")
Whether to include genes with influential observations.
TRUE for computing the optimal number of clusters with Mclust algorithm. (Default is FALSE)
Number of clusters for data partioning.
Print detailed output in the console. (Default is TRUE)
Fill the NAs (if Present), by zero, mean or median.
Whether to use rows or columns for taking mean or median while filling the NAs with `fill_na`.
An object of class ScMaSigPro
, with updated
`Significant` slot with clusters.
Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102
`maSigPro::see.genes()`