Performs stepwise regression and selects the significant polynomial terms
from the full polynomial model. This function is succeeded by
scMaSigPro::sc.p.vector()
.
sc.t.fit(
scmpObj,
selection_method = "backward",
p_value = scmpObj@Parameters@p_value,
nvar_correction = FALSE,
family = scmpObj@Parameters@distribution,
epsilon = scmpObj@Parameters@epsilon,
offset = scmpObj@Parameters@offset,
verbose = TRUE,
parallel = FALSE,
n_cores = availableCores() - 2,
log_offset = scmpObj@Parameters@log_offset,
max_it = scmpObj@Parameters@max_it,
link = scmpObj@Parameters@link
)
An object of class ScMaSigPro
.
Method for step-wise regression.
Significance level used for variable selection in the stepwise regression.
Argument for correcting significance level. See details.
Distribution of the error term.
Model convergence tolerance.
A logical value specifying whether to use offset during fitting.
Print detailed output in the console. (Default is TRUE)
Use forking process to run parallelly. (Default is FALSE) (Currently, Windows is not supported)
Explicitly specify the number of cores to use for parallel model fitting. (Default is inferred from the system using availableCores()-2)
A logical value specifying whether to take the logarithm of the offsets.
Maximum number of iterations to fit the model.
Type of link function to use in the model. Default is "log".
An object of class ScMaSigPro
, with updated `Estimate`
slot.
Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102
Estimates
Class.